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CHAPTER 1

Introduction

1.1 Algorithmic Problems

• Decision problems: yes/no

– Given a graph G, is G connected?

– Given a graph G, is G 3-colorable?

– Given a boolean formula phi, is phi satisfiable?

– Given a natural number M, is M a prime?

• Function problems

– Given 2 integers M and N, find the GCD

– Given a network of cities and distances, find the length of minimal length

• Enumeration problems

– Given a natural number, find its prime factors

– Given a boolean formula phi, find all/how many satisfying assortments

• Optimization problems

– Given a network of cities and distances, find a tour of minimal length

In general, decision problems are the easiest to solve - and any problem can be expressed as a series of decision
problems

1.2 Problem Difficulties

• Unsolvable

• Solvable

1
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– Untractable (NP runtime)

– Tractable (polynomial runtime)

2 Chapter 1. Introduction



CHAPTER 2

Sets

10/5/2020 - 10/12/2020

Set: A collection of distinguishable objects, with unordered, non-repeating elements

Two sets are equal if their elements are equal

2.1 Notation

• 𝑧 ∈ 𝑆 - element member

• 𝑆 = {1, 2, 3} - complete denotation

• ∅ - empty set

• 𝑍 - integers

• 𝑅 - real numbers

• 𝑁 - natural numbers (no 0)

• 𝑄 - rational numbers

• 𝐴 ⊆ 𝐵 - all elements in A are in B (subset)

– ∀𝑥, 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵

• 𝐴 ∩𝐵 - all elements in A and B (intersection)

– {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

• 𝐴 ∪𝐵 - all elements in A or B (union)

– {𝑥 : 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

• 𝐴−𝐵 - all elements in A but not B (difference)

– {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 /∈ 𝐵}

• 𝐴∆𝐵 - all elements in exactly one set (symmetric difference)

3
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– {𝑥 : 𝑥 ∈ (𝐴−𝐵) ∨ 𝑥 ∈ (𝐵 −𝐴)}

Given a universe of discourse Ω:

• 𝐴 = Ω −𝐴 - all elements not in A (complement)

Demorgan’s Laws:

• 𝐴 ∩𝐵 = 𝐴 ∪ �̄�

• 𝐴 ∪𝐵 = 𝐴 ∩ �̄�

Definition:

• {𝑥 ∈ 𝑁 |𝑥2 ∈ 𝑁} - even number definition by restricted comprehension

• {𝑥|𝑃 (𝑥)} - unrestricted comprehension

Power Set: The set of all of a set’s subsets

2.2 Russel’s Paradox

Extraordinary Sets: All sets that include themselves as an element (ex. the set of everything that is not a teacup)

Ordinary Sets: All sets that don’t have themselves as a member

Paradox: Does the set of all ordinary sets contain itself?

This is a paradox - which means that the set of all sets cannot exist

2.3 Relations

Ex. < - the set of all ordered pairs (𝑎, 𝑏) s.t. 𝑎 < 𝑏

• Cartesian product of 2 sets A, B: {(𝑎, 𝑏)|𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

– e.g. {𝑐, 𝑑} × {1, 2, 3} = {(𝑐, 1), (𝑐, 2), (𝑐, 3), (𝑑, 1), (𝑑, 2), (𝑑, 3)}

Binary Relation

A binary relation on A and B is defined by some subset of 𝐴×𝐵 - some examples of binary relations on 𝑁 ×𝑁 are:

• =: {(1, 1), (2, 2), ...}

• <: {(1, 2), (1, 3), (2, 3), ...}

This can be denoted 𝑎 < 𝑏 → (𝑎, 𝑏) ∈<

2.3.1 Properties

Note: For this notation, the symbol ∼ represents an arbitrary relation. This can also be denoted 𝑅, but that doesn’t
look good in LaTeX.

• Reflexive: 𝑥 ∼ 𝑥

– ex: =, <=

• Symmetric: 𝑥 ∼ 𝑦 =⇒ 𝑦 ∼ 𝑥
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– ex: =, but not < or <=

• Transitive: 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 =⇒ 𝑥 ∼ 𝑧

– ex: =, <, <=

– but not: {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑁 ∧ 𝑥 = 𝑦 − 1}

If a relation has all 3 properties, it is called an equivalence relation

2.4 Functions

A function is a binary relation defined on the cross product of the domain and the codomain.

Given 2 sets A and B, a function 𝑓 is a binary relation on 𝐴× 𝐵 s.t. for all x in A, there exists exactly one y in B s.t.
(𝑥, 𝑦) ∈ 𝑓

Notation: 𝑓 : 𝐴 → 𝐵

2.5 Graph

An undirected graph can be represented as a tuple 𝐺 = (𝑉,𝐸) where V and E are sets (vertices, edges), where
𝐸 ⊆ {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉 ∧ 𝑥 ̸= 𝑦} (set of sets of two vertices)

A digraph is similar, but E must use ordered pairs rather than sets to indicate the direction of the edge, and an edge can
go to the same vertex. 𝐸 ⊆ {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑉 × 𝑉 }

Ex:

(1) --- (2) V = {1, 2, 3}
| E = {{1, 2}, {1, 3}}

(3)

(1) --> (2) V = {1, 2, 3}
^ E = {(1, 2), (3, 1)}

(3)

You can use digraphs to represent relations:

2.4. Functions 5



cse103-notes

• Reflexive: every vertex has a self-loop

• Symmetric: all arrows must be bi-directional

• Transitive: the “jump” edge must exist (bottom of drawing)

2.6 Strings

Alphabet: Any finite set (usually notated Σ)

A string over Σ is a finite length sequence of elements from Σ

The length of a string x |𝑥| is the number of symbols in x

An empty string is a unique string of length 0, notated 𝜖

A symbol with an exponent (e.g. 𝑎𝑥) is repeated that many times

Note: 𝑎0 = 𝜖 and 𝑎𝑚+1 = 𝑎𝑚𝑎

Σ* is the set of all strings over the alphabet Σ

Note: ∅* = {𝜖}

6 Chapter 2. Sets
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2.7 Propositional Logic

A proposition is a statement that is true or false.

Connectives

• not: ¬

• and: ∧

• or: ∨

• implies: =⇒

• iff: ⇐⇒

Constants

• 0, 1 (false, true)

Variables

• 𝑋 = {𝑃,𝑄,𝑅, ...}

Series of propositions/operations can be modeled using truth tables (which I am not going to write here, because tables
in RST suck)

Tautology: A proposition that is true in any given state of the universe

Contradiction: A proposition that is false in any given state of the universe

Valid Argument: The conjunction of all givens and the negation of the output is false in all states.

e.g. given the argument:

P -> Q
P
---
Q

(𝑃 =⇒ 𝑄) ∧ 𝑃 ∧ (¬𝑄) is always false.

2.7.1 Useful Tautologies

P -> Q P -> Q P -> Q P or Q
P not Q Q -> R not P
--- --- --- ---
Q not P P -> R Q

P
P P and Q Q
--- --- ---
P or Q Q P and Q

2.8 Cardinality

For finite sets, the cardinality of a set is the number of elements in the set.

Denoted, given a set A, |𝐴|. |∅| = 0

2.7. Propositional Logic 7
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For infinite sets:

• countably infinite: all elements in the set can be put in a 1-to-1 correspondence with natural numbers, or a list of the elements can be generated

– e.g. natural numbers (𝑓(𝑚) = 𝑚)

– even integers (𝑓(𝑚) = 2𝑚)

– integers (𝑓(𝑚) = (−1)𝑚⌊𝑚
2 ⌋)

– strings over the alphabet {0, 1}

– rational numbers (map 𝑁 ×𝑁 onto 𝑝
𝑞 by making a list)

– the union of any two countable sets

– strings over any finite alphabet

• uncountably infinite

– e.g. real numbers (diagonalization)

– set of all languages

Note: Let’s go back and look at Σ* - all strings over an alphabet.

• Σ* is countably infinite, but

• 𝑃 (Σ*) is not!

You can use diagonalization to prove that 𝑃 (Σ*) is uncountably infinite using the same binary argument as real
numbers - use 1 to indicate an element’s presence in the subset, and 0 to indicate its not

In general, the power set of any set has greater cardinality than that set.
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Proofs

10/12/2020 -

Definitions:

• Statements to be proved or already proved:

– Theorem

– Proposition

– Lemma

– Corollary (immediately follows from proof of theorem)

• Statements assumed to be true:

– Axiom

– Postulate

3.1 Induction

Weak Induction: Prove base cases, then prove inductive steps.

Ex. Prove that the sum of the first m odd numbers 𝑆(𝑚) is equal to 𝑚2.

• B.S. m = 1, 1 = 12.

• I.S. Assume 𝑆(𝑚) = 𝑚2 for some 𝑚 ≥ 1.

– 𝑆(𝑚 + 1) = 𝑆(𝑚) + 2(𝑚 + 1) − 1

– = 𝑚2 + 2𝑚 + 2 − 1

– = 𝑚2 + 2𝑚 + 1

– = (𝑚 + 1)2.

9
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Strong Induction: Prove all cases less than current case implies current case.

Ex. Prove ∀𝑚 > 1,𝑚 is divisible by a prime.

Consider any 𝑚 > 1:

1. m is a prime. QED.

2. m is not a prime: 𝑚 = 𝑎 * 𝑏, where 𝑎, 𝑏 < 𝑚 and 𝑎, 𝑏 > 1

1. By IH, 𝑎 is divsible by a prime 𝑃

2. 𝑃 |𝑎 and 𝑎|𝑚, so 𝑃 |𝑚. QED.

3.2 Contrapositive

Rather than proving 𝑝 =⇒ 𝑞, prove ¬𝑞 =⇒ ¬𝑝.

Ex. 𝑝2 is even =⇒ 𝑝 is even

3.3 Contradiction

Prove that the opposite statement causes a contradiction.

Ex. Prove that
√

2 is irrational.

1. Assume that
√

2 = 𝑝
𝑞 , 𝑝, 𝑞 ∈ 𝑁 with no common factor

2. 𝑝2 = 2𝑞2

3. 𝑝2 is even

4. 𝑝 is even

5. 𝑝 = 2𝑘

6.
√

2 = 2𝑘
𝑞

7. 𝑞2 = (2𝑘)2

2 = 2𝑘2

8. 𝑞2 is even

9. 𝑞 is even

10. 2|𝑝 and 2|𝑞, so by contradiction
√

2 is not rational.

3.4 Pidgeonhole Principle

Given n containers and m items, if m > n, at least one container must have more than one item in it.

Ex. For any m, there exists a multiple of m that is a sequence of 1s followed by a sequence of 0s in binary.

• For some m, consider the sequence 1 11 111 ... 111...11 where the last item is of length m+1

• if you divide by m, there are only m remainders possible: [0..m-1]

• There are m+1 items in the sequence but only m possible remainders, so two items in the sequence will have the
same remainder

• Let 𝑎 = 𝑘1𝑚 + 𝑟, 𝑏 = 𝑘2𝑚 + 𝑟, 𝑎 > 𝑏
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• ∴ 𝑎− 𝑏 = (𝑘1 − 𝑘2)𝑚

• 𝑎− 𝑏 is a multiple of m and of form 111...00

3.4. Pidgeonhole Principle 11
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CHAPTER 4

DFA

Deterministic Finite Automaton (DFA) is a structure:

𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), where:

• 𝑄 is a finite set of states

• Σ is a finite set of symbols (input alphabet)

• 𝛿 : 𝑄× Σ → 𝑄 is the transition function

– given a current state and input, use delta to find the new state

• 𝑠 = 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 are the accept/final states

Defns:

• 𝑥 ∈ Σ* if accepted by M if M stops in F

• 𝐿(𝑀) is the language of machine M when it consists of all strings the machine accepts

• 𝐿 ⊆ Σ* is regular if there is a DFA M s.t. 𝐿 = 𝐿(𝑀) (some dfa recognizes it)

DFAs can be represented using a graph/flowchart thing. Final states are represented by double-bordered nodes.

Note: An example of a non-regular language is {0𝑚1𝑚|𝑚 ≥ 1}. (e.g. 01, 0011, 000111, etc)

Note: Any finite language is regular, since it can be represented by just a really huge DFA!

4.1 Extended Transition Function

𝛿 : 𝑄× Σ* → 𝑄

13
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Rather than a transition from one state to the next given a symbol, this function maps a starting state and a string to
the result after processing what whole string.

Inductice Defn

• For all 𝑞 ∈ 𝑄, 𝑥 ∈ Σ*, 𝑎 ∈ Σ:

• 𝛿(𝑞, 𝜖) = 𝑞

– the extended transition function of any state and the empty string is the same state

• 𝛿(𝑞, 𝑥𝑎) = 𝛿(𝛿(𝑞, 𝑥), 𝑎)

– just the normal transition plus one more

4.2 Thms

• Given a regular language, the complement of that language is also regular. (let the accept states of the DFA be the rejects of the regular language.)

– 𝑥 ∈ 𝐿(𝑀) → 𝛿(𝑠, 𝑥) /∈ 𝐹

– 𝛿(𝑠, 𝑥) ∈ 𝑄− 𝐹 = 𝐹𝑐

– 𝛿(𝑠, 𝑥) ∈ 𝐹𝑐

– 𝑥 ∈ 𝐿(𝑀𝑐)

4.3 Examples

4.3.1 Two Ones

This image shows a DFA that accepts any string starting with two ones.

14 Chapter 4. DFA
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4.3.2 Even Ones

Consider a DFA that accepts any string with an even number of ones. (Σ = {0, 1})

4.3. Examples 15
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4.3.3 3 As

Consider a DFA that accepts any string that contains at least 3 As. (Σ = {𝑎, 𝑏})

16 Chapter 4. DFA
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4.3.4 3 Consec As

Consider a DFA that accepts any string that contains at least 3 consecutive As. (Σ = {𝑎, 𝑏})

4.3. Examples 17
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4.3.5 0m0

Design a DFA for the language 𝐿(𝑀) = {01𝑛0|𝑛 ≥ 0}.

4.3.6 00011

Design a DFA for the language 𝐿(𝑀) = {0𝑛1𝑚|𝑛,𝑚 ≥ 1}.

18 Chapter 4. DFA
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Note: However, 𝐿(𝑀) = {0𝑛1𝑛|𝑛 ≥ 1} does not exist. Such a DFA would have to be infinitely large:

4.3.7 Odds/Evens

This DFA tracks how many 1s and 0s are found in a string. 16 different languages can be defined with choices of
accept states:

4.3. Examples 19
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4.3.8 Div3

Design a DFA for the language of all binary numbers that are divisible by 3

20 Chapter 4. DFA
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4.3.9 Len3

Strings of length multiple of 3.

4.4 Intersection

aka Product Construction

Thm: If languages A and B are regular, then 𝐴 ∩𝐵 is regular.

• there exists 𝑀1 = (𝑄1,Σ, 𝛿1, 𝑠1, 𝐹1) with 𝐿(𝑀1) = 𝐴

• there exists 𝑀2 = (𝑄2,Σ, 𝛿2, 𝑠2, 𝐹2) with 𝐿(𝑀2) = 𝐵

• since A and B are regular, we can build a DFA 𝑀3 s.t. 𝐿(𝑀3) = 𝐴 ∩𝐵.

• let 𝑀3 = (𝑄3,Σ, 𝛿3, 𝑠3, 𝐹3)

• 𝑄3 = 𝑄1 ×𝑄2 = {(𝑝, 𝑞)|𝑝 ∈ 𝑄1, 𝑞 ∈ 𝑄2}

• 𝐹3 = 𝐹1 × 𝐹2 = {(𝑝, 𝑞)|𝑝 ∈ 𝐹1, 𝑞 ∈ 𝐹2}

• 𝑠3 = (𝑠1, 𝑠2)

• 𝛿3 : 𝑄3 × Σ → 𝑄3

– 𝛿3((𝑝, 𝑞), 𝑎) = (𝛿1(𝑝, 𝑎), 𝛿2(𝑞, 𝑎))

• extended transition function:

– 𝛿3((𝑝, 𝑞), 𝜖) = (𝑝, 𝑞)

– 𝛿3((𝑝, 𝑞), 𝑥𝑎) = 𝛿3(𝛿3((𝑝, 𝑞), 𝑥), 𝑎)

Pf: 𝐿(𝑀3) = 𝐿(𝑀1) ∩ 𝐿(𝑀2)

4.4. Intersection 21
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Ex: Given two machines that accept an even number of 0s and odd number of 1s, the intersection can be constructed
as such:

Ex: Even number of 1s and form 01𝑚0

Note that there is no way into (𝑝1, 𝑞0).

22 Chapter 4. DFA
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4.5 Union

Thm: If languages A and B are regular, then 𝐴 ∪𝐵 is regular.

• A is regular =⇒ ¬𝐴 is regular

• B is regular =⇒ ¬𝐵 is regular

• ¬𝐴 and ¬𝐵 regular =⇒ ¬𝐴 ∩ ¬𝐵 regular

• ¬𝐴 ∩ ¬𝐵 regular implies ¬(¬𝐴 ∩ ¬𝐵) regular

• ¬(¬𝐴 ∩ ¬𝐵) regular implies 𝐴 ∪𝐵 regular (demorgans).

4.5. Union 23
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NFA

𝑁 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), where:

• 𝑄 is a finite set of states

• Σ is a finite set of symbols (input alphabet)

• 𝛿 : 𝑄× Σ → 𝑃 (𝑄) is the transition function

– the transition function relation on (𝑄× Σ) ×𝑄

– 𝛿(𝑝, 𝑎) ∈ 𝑃 (𝑄)

– the set of all states N can move to from p in one step under the symbol a

– 𝑝 →𝑎 𝑞 in 𝑞 ∈ 𝛿(𝑝, 𝑎)

– 𝛿(𝑝, 𝑎) can be empty set

• 𝑠 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 are the accept/final states

Extended Transition Function

• 𝛿*(𝑞, 𝜖) = {𝑞}

• 𝛿*(𝑞, 𝑎) = 𝛿(𝑞, 𝑎)

• 𝛿*(𝑞, 𝑥𝑎) =
⋃︀

𝑝∈𝛿*(𝑞,𝑥) 𝛿(𝑞, 𝑎)

Accept

𝑤 ∈ Σ* is accepted if 𝛿*(𝑠, 𝑤) ∩ 𝐹 ̸= ∅

(a string will be accepted if it’s possible to accept the string)

Note: It is trivial to prove that every DFA is also a NFA (if the output if the DFA transition is put into a set).

25
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5.1 Examples

String ends with 101.

String contains 111.

String contains 001 or 010 or 100 or 11.

NFAs are easier to design.
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as an NFA:

And a weird one:

5.1. Examples 27
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or

5.2 Subset Construction

aka the Rabin-Scott theorem

Given a NFA 𝑁 = (𝑄𝑁 ,Σ, 𝛿𝑁 , 𝑠𝑛, 𝐹𝑛), it is possible to construct a DFA:

𝑀 = (𝑄𝐷,Σ, 𝛿𝐷, 𝑠𝐷, 𝐹𝐷)

• 𝑄𝐷 = 𝑃 (𝑄𝑁 )

• 𝑠𝐷 = {𝑠𝑁}

• 𝐹𝐷 = {𝑃 ⊆ 𝑄𝑁 |𝑃 ∩ 𝐹𝑁 ̸= ∅}

• 𝛿𝐷 : 𝑄𝐷 × Σ → 𝑄𝐷 (i.e. 𝑃 (𝑄𝑁 ) × Σ → 𝑃 (𝑄𝑁 ))

– 𝛿𝐷(𝑃, 𝑎) =
⋃︀

𝑝∈𝑃 𝛿𝑁 (𝑝, 𝑎) for 𝑃 ⊆ 𝑄𝑁
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TLDR: the states of the DFA are the sets of states possible at any given point in the NFA.

Ex.

Given this language and NFA:

the DFA looks like:

Ex 2.

A language of 0s and 1s, where the second-last symbol is a 0.

NFA:

DFA:

5.2. Subset Construction 29
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Ex 3.

The family of languages 𝐿𝑛 = {𝑤 ∈ {0, 1}*| the nth position from end is 1}

The DFA for 𝐿𝑛 cannot have less than 2𝑛 states. Pf:

• Assume there is some DFA that recognizes 𝐿𝑛 that has less than 2𝑛 states.

• Consider strings of length n. There are 2𝑛 such strings.

• Consider two arbitrary strings x and y that both end in a state p.

• Consider the first position those two strings differ k.

• Call the same identical part of the string u.

• If we redefine x and y such that k is the start and u is moved to the end, we get two strings with different
characters n from the end, only one of which is accepted

• Contradiction!
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5.3 Epsilon Moves

Epsilon moves allow us to jump to another state without taking any input.

Consider 𝐿 = {1𝑛|𝑛 is a multiple of 3 or 5}

5.3. Epsilon Moves 31
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While epsilon moves make NFAs easier to design, any NFA with epsilon moves can be rewritten as one without.

Formally:

𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), where:

• 𝛿 : 𝑄× (Σ ∪ {𝜖}) → 𝑃 (𝑄) is the transition function

– 𝛿(𝑞, 𝜖) → 𝑃 ⊆ 𝑃 (𝑄) does not move the scan head

Thm:

For every 𝜖-NFA there is an NFA �̂� s.t. 𝐿(𝑀) = 𝐿(�̂�).

• �̂� = (�̂�,Σ, 𝛿, 𝑠, 𝐹 ), where:

• �̂� = 𝑄

• 𝑠 = 𝑠

• 𝛿 : �̂�× Σ → 𝑃 (�̂�)

– 𝛿(𝑝, 𝑎) = {𝑞| there are states 𝑝1, 𝑝2 s.t.:

* 𝑝1 ∈ 𝐸(𝑝)

* 𝑝2 ∈ 𝛿(𝑝1, 𝑎)

* 𝑞 ∈ 𝐸(𝑝2)}

– where 𝐸(𝑝) is the set of all states reachable from p using only epsilon moves.
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• new accept states are states that can reach accept states with epsilon moves

Ex:

(cleaner view)

5.3. Epsilon Moves 33
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5.4 Closure

Regular languages are closed under:

• complement

• union

• intersection

• difference

• concatenation

• kleene star

• quotient

• reversal

5.4.1 Concatenation

5.4.2 Kleene Star

The set of all strings that can be generated by concatenating 0 or more strings in a set of strings.

5.4.3 Reversal

Reverse all arrows, make start state accept state, make accept states the start states (using epsilon).
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Regular Expressions

Regular expressions over alphabet Σ:

Ex. Begin with 0, end with 11: 0(0+1)*11

Ex. Contains at least 2 1s: (0+1)* 1 (0+1)* 1 (0+1)* or 0* 1 0* 1 (0+1)*

37
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Note: a+ is often used as an abbreviation for aa*

Ex. Contains the substring 111: (0+1)* 111 (0+1)*

Ex. Even length: ((0+1)(0+1))*

Ex. Odd length: (0+1)((0+1)(0+1))*

Ex. Strings that don’t end with 01: e + 1 + (0+1)*0 + (0+1)*11 - it’s hard to exclude things!

Ex. Every 0 is followed by at least one 1: 1* (011*)*

Ex. 3rd symbol from right is 1: (0+1)* 1 (0+1)(0+1)

Ex. Contains both 01 and 10. ((0+1)* 01 (0+1)* 10 (0+1)*) + ((0+1)* 10 (0+1)* 01
(0+1)*)

Ex. Not containing 00. (1+01)*(0+e)

Ex. At most 1 00. Consider: (1+01)* has no 00 and does not end w/ 0, (1+10)* has no 00 and does not start w/ 0.
So exactly 1 occurance of 00: (1+01)* 00 (1+10)*, and up to 1 is just the combination: (1+01)*(0+e) +
(1+01)* 00 (1+10)*.

Ex. Not containing 110. 0* (100*)* 111*

6.1 Kleene’s Thm

For every regular expression, there is an equivalent 𝜖-NFA.

Use strong induction to prove:

1. NFAs for regexes of length 1:

• let the building blocks have a unique accept state
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2. All regexes longer than length 1 are:

• two smaller regexes with addition

• two smaller regexes with concatenation

• one smaller regex starred

3. IS: prove S(M) is true given that S(i) is true for all i < M.

• Case: 𝑟 = 𝑟1 + 𝑟2

– since 𝑟1, 𝑟2 are smaller than r, there exists an 𝜖-NFA with a single unique accept state for each. (IH)

– Let these be 𝑀1 and 𝑀2.

– By adding a new start state, e-steps from that start state to the start states of of 𝑀1 and 𝑀2, and e-
steps from the accept states to a new unique accept state, it is possible to construct an 𝜖-NFA to accept
𝑟1 + 𝑟2.

• Case: 𝑟 = 𝑟1 · 𝑟2 (concatenate)
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– since 𝑟1, 𝑟2 are smaller than r, there exists an 𝜖-NFA with a single unique accept state for each. (IH)

– Let these be 𝑀1 and 𝑀2.

– By adding an e-step from the accept state of M1 to the start state of M2, it is possible to construct an
𝜖-NFA to accept 𝑟1 + 𝑟2.

• Case: 𝑟 = 𝑟1*

– since 𝑟1 is smaller than r, there exists an 𝜖-NFA with a single unique accept state. (IH)

– Let this be 𝑀1.

– By adding an e-step from the old accept state to the old start state, from the old accept state to a new
accept state, and the new start state to a new accept state.

– QED.

6.1.1 The Other Way Around

Thm. Given a DFA, NFA, or e-NFA, there exists a regex that accepts the language of that FA.

40 Chapter 6. Regular Expressions



cse103-notes

Define 𝐿𝑘
𝑖𝑗 as the set of strings that will move the DFA from 𝑞𝑖 to 𝑞𝑗 , where all intermediate states’ indices are < k.

Now we can define L(M) as the union of all ways to get from 𝑞0 to an accept state for each accept state:
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(Above: let’s call this regex for 𝐿𝑘
𝑖𝑗 𝑟

𝑘
𝑖𝑗)

The induction:

• base case. Since k = 0, this means only direct transitions:
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this produces two cases: if the path does not encounter k, or if it does:
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And if it does, it must have a first time it enters k and the last time it exits k, and anything in between must be k to k,
where all intermediate nodes are < k:
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Now, we can expand this regex to:∑︀
𝑞𝑗∈𝐹 𝑟𝑘0𝑗 .

6.1.2 Example

(left axis: i, j; top axis: k)
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See published notes for full work.
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Pumping Lemma

If a language L is regular, then:

(P): There exists a 𝑝 ≥ 0 s.t. for any string 𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝, there exist strings 𝑥𝑦𝑧 s.t. 𝑠 = 𝑥𝑦𝑧, 𝑦 ̸= 𝜖, |𝑥𝑦| ≤ 𝑝,
and for all 𝑖 ≥ 0, the string 𝑥𝑦𝑖𝑧 ∈ 𝐿.

“there exists a non-empty string (y) within the first p characters (3rd constraint) that can be pumped, with the resulting
string still being in the language.”

The contrapositive of this (¬𝑃 =⇒ L is not regular) is used to prove that a language is not regular.

(not P): For all 𝑝 ≥ 0 there exists a string 𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝, and for all 𝑥, 𝑦, 𝑧 such that 𝑥𝑦𝑧 = 𝑠, 𝑦 ̸= 𝜖, |𝑥𝑦| ≤ 𝑝
there exists an 𝑖 ≥ 0 such that 𝑥𝑦𝑖𝑧 /∈ 𝐿.

You can use this adversarial game to prove the contrapositive:
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7.1 Proof

Given a DFA with p states, processing any string with length 𝑚 ≥ 𝑝 means the machine will visit at least p + 1 states.
By the pigeonhole principle, at least one state will be revisited.

Notice that the string that causes the DFA to go from 𝑠𝑗 to 𝑠𝑙 can be repeated infinitely, since they are a loop.

7.2 Examples

7.2.1 Ex 1

𝐴 = {0𝑚1𝑚|𝑚 ≥ 0} is not regular.

Use the demon game as a valid proof:

• Demon picks p

• we pick 𝑠 ∈ 𝐿 and |𝑠| ≥ 𝑝

– 𝑠 = 0𝑝1𝑝

• demon picks partition 𝑥, 𝑦, 𝑧 s.t. 𝑥𝑦𝑧 = 𝑠, |𝑥𝑦| ≤ 𝑝, 𝑦 ̸= 𝜖

• we show any partition that satisfies these conditions cannot be pumped for some 𝑖 ≥ 0

– since |𝑥𝑦| ≤ 𝑝, 𝑦 ̸= 𝜖 and we chose 𝑠 = 0𝑝1𝑝, y must be one or more 0s

– choose 𝑖 = 2: this causes 𝑥𝑦2𝑧 to have more 0s than 1s and not be in the language

– QED
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7.2.2 Ex 2

𝐿 = {𝑤| of 0s = of 1s} is not regular.

Abbreviated demon argument:

• 𝑝

• 𝑠 = 0𝑝1𝑝

• for any partition 𝑥, 𝑦, 𝑧 s.t. 𝑥𝑦𝑧 = 𝑠, |𝑥𝑦| ≤ 𝑝, 𝑦 ̸= 𝜖: (same argument as before)

– y must be made of 1 or more 0s

– choose 𝑖 = 2: this causes 𝑥𝑦2𝑧 to have more 0s than 1s and not be in the language

– QED

7.2.3 Ex 3

𝐿 = {1𝑗0𝑖|𝑗 < 𝑖} is not regular

• 𝑝

• 𝑠 = 1𝑝0𝑝+1 (conditions: 𝑠 ∈ 𝐿, |𝑠| = 2𝑝 + 1 ≥ 𝑝)

• for any partition 𝑥, 𝑦, 𝑧 s.t. 𝑥𝑦𝑧 = 𝑠, |𝑥𝑦| ≤ 𝑝, 𝑦 ̸= 𝜖:

– y must be made of 1 or more 1s

– choose 𝑖 = 2: this causes 𝑥𝑦2𝑧 to have 𝑖 ≥ 𝑗 and not be in the language

– QED

7.2.4 Ex 4

𝐿 = {0𝑖1𝑗 |𝑖 > 𝑗} is not regular

• Assume L is regular

• so the reverse of L is regular (closure under reverse)

• The reverse of L is not regular (ex 3)

• so L is not regular. QED.

7.2.5 Ex 5

𝐿 = {𝑤𝑤|𝑤 ∈ {0, 1}*} is not regular

• 𝑝

• 𝑠 = 0𝑝10𝑝1

– |𝑠| = 2𝑝 + 2 ≥ 𝑝, 𝑠 ∈ 𝐿

• 𝑥𝑦𝑧 = 0𝑝10𝑝1 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

• if 𝑖 = 2, 𝑥𝑦2𝑧 /∈ 𝐿.

– since then there will be more 0s before the first 1 than before the last one.
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7.2.6 Ex 6

Palindrones ( 𝐿 = {𝑤|𝑤 = 𝑤𝑅} ) are not regular.

• 𝑝

• 𝑠 = 0𝑝10𝑝

– |𝑠| = 2𝑝 + 1 ≥ 𝑝, 𝑠 ∈ 𝐿

• 𝑥𝑦𝑧 = 0𝑝10𝑝 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

– for any i 2, the new string of the form 𝑥𝑦𝑖𝑧 will have more 0s before the 1 than after, and will no
longer be in the language.

7.2.7 Ex 7

𝐿 = {0𝑚1𝑛|𝑚 ̸= 𝑛} is not regular

• 𝑝

• 𝑠 = 0𝑝1𝑝+𝑝!

• 𝑥𝑦𝑧 = 0𝑝1𝑝+𝑝! s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

– so y must be 1 or more 0s

– let the length of y be k, so 𝑥𝑦𝑧 = 0𝑝−𝑘0𝑘1𝑝+𝑝!

• pick 𝑖 = 𝑝!
𝑘 + 1

– |𝑦| = 𝑘, so |𝑦𝑖| = 𝑘𝑖 = 𝑘 * 𝑝!
𝑘 + 1 = 𝑝! + 𝑘

• then 𝑥𝑦𝑧 = 0𝑝−𝑘0𝑝!+𝑘1𝑝+𝑝!

– = 0𝑝+𝑝!1𝑝+𝑝! /∈ 𝐿.

7.2.8 Ex 7b

Alternatively, assume L is regular.

• Then ¬𝐿 is regular (closed on complement)

• Then ¬𝐿 ∩ 0*1* is regular (closed on intersection)

• That language is {0𝑚1𝑛|𝑚 = 𝑛}, which is not regular - contradiction!

7.2.9 Ex 8

𝐿 = {1𝑛
2 |𝑛 ≥ 0} is not regular

• 𝑝

• 𝑠 = 1𝑝
2

• 𝑥𝑦𝑧 = 𝑠 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

• let i = 2, then:

– |𝑥𝑦2𝑧| − |𝑥𝑦𝑧| = |𝑦| ≤ 𝑝

– |𝑥𝑦2𝑧| ≤ 𝑝2 + 𝑝
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– 𝑝2 < |𝑥𝑦2𝑧| ≤ 𝑝2 + 𝑝 < (𝑝 + 1)2, so 𝑠 /∈ 𝐿.

7.2.10 Ex 9

𝐿 = {02
𝑛 |𝑛 ≥ 1} is not regular

• 𝑝

• 𝑠 = 02
𝑝

• 𝑥𝑦𝑧 = 𝑠 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

– let |𝑥| = 𝑎, |𝑦| = 𝑏, |𝑧| = 𝑐, 0 < 𝑏 ≤ 𝑝, 𝑎 + 𝑏 = 𝑝

• let i = 2, 𝑠′ = 𝑥𝑦2𝑧, then:

– |𝑥𝑦2𝑧| = 2𝑝 + 𝑏

– 2𝑝 + 𝑏 ≤ 2𝑝 + 𝑝

– < 2𝑝 + 2𝑝

– = 2𝑝+1

– so |𝑥𝑦2𝑧| is not a power of 2, so 𝑠′ /∈ 𝐿.

7.2.11 Ex 10

𝐿 = {𝑎𝑛!|𝑛 ≥ 0} is not regular

• 𝑝

• 𝑠 = 𝑎𝑝!

• 𝑥𝑦𝑧 = 𝑠 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1

– let |𝑥| = 𝑗, |𝑦| = 𝑚 > 0, |𝑧| = 𝑛, 𝑗 + 𝑚 + 𝑛 = 𝑝!

• pick i s.t. |𝑥𝑦𝑖𝑧| ≠ 𝑞! for any q

– for any i, |𝑥𝑦𝑖𝑧| = 𝑗 + 𝑖𝑚 + 𝑛 = 𝑝! + (𝑖− 1)𝑚

– pick 𝑖 = (𝑝 + 1)! + 1, then |𝑥𝑦𝑖𝑧| = 𝑝!(𝑝 + 1)!𝑚

– = 𝑝!(1 + 𝑚(𝑝 + 1)), prove that this is not a factorial

– assume 𝑞! = 𝑝!(1 + 𝑚(𝑝 + 1))

– then dividing both sides by 𝑝!: 𝑞(𝑞 − 1)(𝑞 − 2)...(𝑝 + 2)(𝑝 + 1) = (1 + 𝑚(𝑝 + 1))

– impossible because left is divisible by 𝑝 + 1 and right side leaves remainder of 1.

– therefore 𝑝!(1 + 𝑚(𝑝 + 1)) is not a factorial, so 𝑥𝑦𝑖𝑧 /∈ 𝐿.

7.2.12 Ex 11

𝐿 = {1𝑛|𝑛 is prime}

• 𝑝

• 𝑠 = 1𝑝
′

where 𝑝′ is a prime larger than p

• 𝑥𝑦𝑧 = 𝑠 s.t. |𝑥𝑦| ≤ 𝑝, |𝑦| > 1
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– let 𝑥 = 1𝑎, 𝑎 ≥ 0

– let 𝑦 = 1𝑏, 𝑏 > 0

– let 𝑧 = 1𝑐, 𝑐 ≥ 0

– where 𝑎 + 𝑏 + 𝑐 = 𝑝′

– so the claim is 𝑎 + 𝑖𝑏 + 𝑐 is a prime for all i

• let 𝑖 = 𝑎 + 2𝑏 + 𝑐 + 2

– then 𝑎 + 𝑖𝑏 + 𝑐 = (𝑏 + 1)(𝑎 + 2𝑏 + 𝑐)

– this is a factor of two numbers, and so not a prime

– therefore 𝑥𝑦𝑖𝑧 /∈ 𝐿.
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DFAs Extra

8.1 Minimizing a DFA

Given a DFA:

1. Remove inaccessible states

2. Collapse equivalent areas

E.g.:
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8.1.1 Identifying Equivalent States

Do this by identifying all states that cannot be equivalent: two states cannot be equivalent if processing the same some
string at each state brings you to a different acceptance value
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Formally, 𝑝 ≈ 𝑞 iff ∀𝑥 ∈ Σ*(𝛿(𝑝, 𝑥) ∈ 𝐹 ⇐⇒ 𝛿(𝑞, 𝑥) ∈ 𝐹 )
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You can use these equivalence classes to make a quotient automaton:
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8.1.2 Equivalence Relations

• must be reflexive, symmetric, transitive

• partitions a set into disjoint parts (equivalence classes)

– if R is an equivalence relation on A, [𝑥]𝑅 = {𝑦|𝑥 𝑅 𝑦}

• given [𝑥]𝑅 and [𝑦]𝑅, they are either the same or disjoint

• the union of all equivalence classes of a set is the set

• the index of an equivalence relation is the number of equivalence classes

If, for all 𝑥 ∈ 𝐴, [𝑥]1 ⊆ [𝑥]2 (where 1 and 2 are 2 different relations), then 1 is finer than 2.

Therefore, the index of relation 1 will be greater than the index of relation 2.
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8.2 Myhill-Nerode

Idea:

• Let L be any language in Σ* (so 𝐿 ⊆ Σ*).

• Let 𝑅𝐿 be a special equivalence relation on Σ*.

• 𝑥 𝑅𝐿 𝑦 iff ∀𝑧 ∈ 𝐿, (𝑥𝑧 ∈ 𝐿 ⇐⇒ 𝑦𝑧 ∈ 𝐿)

– these two strings are equivalent if regardless of what you append to them, they are both either in the
language or not

Thm:

Let 𝐿 ⊆ Σ*. Then the following statements are equivalent:

1. L is regular

2. The index of 𝑅𝐿 is finite

1 =⇒ 2 is relatively easy to prove - 2 =⇒ 1 (shown here) is harder, but we prove it by constructing a DFA:
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If you can find an infinite sized set of all strings in Σ* such that no two of them are in the same equivalence class,
then that language is not regular (since the equivalences classes of that set are a subset of equivalence classes in that
language):

8.2.1 Ex 1

Prove that 𝐿 = {0𝑛1𝑛|𝑛 ≥ 1} is not regular using M-N:

• Let 𝑆 = {0𝑛|𝑛 ≥ 1}

• |𝑆| is infinite

• Examine 0𝑖, 0𝑗 ∈ 𝑆 where 𝑖 ̸= 𝑗

– By appending 1𝑖 to both strings, we get one string in the language and another that is not

– so all items in this set are in different equivalence classes of 𝑅𝐿

• So the language is not regular.

8.2.2 Ex 2

Prove that 𝐿 = {𝑤 ∈ Σ*|w is a palindrome} is not regular using M-N:
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• Let 𝑆 = {01, 001, 0001, ...} = {0𝑖1|𝑖 ≥ 1}

• |𝑆| is infinite

• Examine 0𝑖1, 0𝑗1 ∈ 𝑆 where 𝑖 ̸= 𝑗

– By appending 0𝑖 to both strings, we get one string in the language and another that is not

– so all items in this set are in different equivalence classes of 𝑅𝐿

• So the language is not regular.

8.2.3 Ex 3

𝐿 = {𝑤𝑤|𝑤 ∈ Σ*}

• Let 𝑆 = {0𝑖1|𝑖 ≥ 1}

• |𝑆| is infinite

• Examine 0𝑖1, 0𝑗1 where 𝑖 ̸= 𝑗

– By appending 0𝑖1 to both strings, we get one string in the language and another that is not:

* 0𝑖10𝑖1 ∈ 𝐿

* 0𝑗10𝑖1 /∈ 𝐿

– so all items in this set are in different equivalence classes of 𝑅𝐿

– so the index of 𝑅𝐿 is infinite

• So the language is not regular.

8.2.4 Ex 4

𝐿 = {1𝑚!|𝑚 ≥ 1}

• Let 𝑆 = 𝐿

• |𝑆| is infinite

• Examine 1𝑖!, 1𝑗! where 𝑖 ̸= 𝑗

– By appending 1𝑖𝑖!, we get:

– 1𝑖!1𝑖𝑖! = 1(𝑖+1)! ∈ 𝐿

– 1𝑗!1𝑖𝑖! = 1
𝑗!
𝑖! 𝑖!+𝑖𝑖!

* = 1𝑖!(
𝑗!
𝑖!+𝑖)

* proof by contradiction: assume 𝑖!( 𝑗!
𝑖! + 𝑖) is some factorial 𝑞!

· 𝑞! = 𝑖!( 𝑗!
𝑖! + 𝑖)

· 𝑞(𝑞 − 1)...(𝑖 + 1) = 𝑗!
𝑖! + 𝑖

· = 𝑗(𝑗 − 1)...(𝑖 + 1) + 𝑖

· dividing both sides by 𝑖+1, the remainder on the left is 0 while the remainder on the right
is 1

· so 𝑖!( 𝑗!
𝑖! + 𝑖) is not some factorial.
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* so = 1𝑖!(
𝑗!
𝑖!+𝑖) /∈ 𝐿

– so all items in this set are in different equivalence classes of 𝑅𝐿

– so the index of 𝑅𝐿 is infinite

• so the language is not regular.

8.2.5 Ex 5

𝐿 = {𝑎𝑖𝑏𝑗𝑘𝑐|𝑖, 𝑗, 𝑘 ≥ 0 ∧ 𝑖 = 1 =⇒ 𝑗 = 𝑘}

This language cannot be proven irregular using the pumping lemma thm.

• let 𝑆 = {𝑎𝑏𝑖|𝑖 ≥ 1}

• |𝑆| is infinite

• Examine 𝑎𝑏𝑖, 𝑎𝑏𝑗 where 𝑖 ̸= 𝑗. Append 𝑐𝑖 to both:

– 𝑎𝑏𝑖𝑐𝑖 ∈ 𝐿

– 𝑎𝑏𝑗𝑐𝑖 /∈ 𝐿

• so the index of 𝑅𝐿 is infinite and L is not regular.

8.2.6 Ex 6

𝐿 = {0𝑝|𝑝 is prime}
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8.2.7 Ex 7

𝐿 = {1𝑛|𝑛 is even} is regular. Show that the index of 𝑅𝐿 is finite.

Note: Intuitively, the 2 equivalence classes of 𝑅𝐿 are the even lengths and the odd lengths.

• All strings in Σ* fall into one of two equivalence classes of 𝑅𝐿:

• Case 1: Examine 1𝑗𝑧, 1𝑘𝑧 where j and k are even.

– Case 1: z is of even length.

* The lengths of both strings will be even (sum of 2 even numbers is an even number)

* so both strings will be in the language.

– Case 2: z is of odd length.

* The lengths of both strings will be odd (sum of even and odd numbers is an odd number)
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* so both strings will not be in the language.

• Case 2: Examine 1𝑗𝑧, 1𝑘𝑧 where j and k are odd.

– Case 1: z is of even length.

* The lengths of both strings will be odd (sum of even and odd numbers is an odd number)

* so both strings will not be in the language.

– Case 2: z is of odd length.

* The lengths of both strings will be even (sum of 2 odd numbers is an even number)

* so both strings will be in the language.

• The index of 𝑅𝐿 is finite, so the language is regular.

8.2.8 Additional Comments

Each equivalence class of 𝑅𝐿 corresponds to a state in the minimal DFA of the language.

Ex: 𝐿 = {𝑤|𝑤 has an even number of 0s and 1s}
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8.3 Two-Way DFAs

aka 2dfa

𝑀 = (𝑄,Σ,⊢,⊣, 𝛿, 𝑠, 𝑡, 𝑟)

• 𝑄 = a finite set of states

• Σ = a finite set (input alphabet)

• ⊢ = left end marker (/∈ Σ)

• ⊣ = right end marker (/∈ Σ)

• 𝛿 : 𝑄× (Σ ∪ {⊢,⊣}) → (𝑄× {𝐿,𝑅})

• 𝑠 ∈ 𝑄 = start state

• 𝑡 ∈ 𝑄 = unique accept state

• 𝑟 ∈ 𝑄 = unique reject state

This makes it possible to accept or reject an input without reading the whole thing, or loop forever.

Note: there are some safety mechanisms in place:

• ∀𝑞 ∈ 𝑄, you cannot go off the end of the tape:

– 𝛿(𝑞,⊢) = (𝑢,𝑅) for some 𝑢 ∈ 𝑄

– 𝛿(𝑞,⊣) = (𝑢, 𝐿) for some 𝑢 ∈ 𝑄

• ∀𝑏 ∈ Σ ∪ {⊢},

– 𝛿(𝑡, 𝑏) = (𝑡, 𝑅)

– 𝛿(𝑡,⊣) = (𝑡, 𝐿)

– 𝛿(𝑟, 𝑏) = (𝑡, 𝑅)

– 𝛿(𝑟,⊣) = (𝑡, 𝐿)

– once in t or r, keep moving right.

8.3.1 Example

• Scan LtR, counting a’s, then RtL counting b’s.

• Reject early if encounter right end with invalid num of a’s.

• Otherwise make reject/accept decision at left end given number of b’s.
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8.3.2 Additional Comments

Given some boundary on the tape, assuming you cross that boundary at some point again, the state you are in when you
cross the boundary going the opposite direction depends only on tape behind the boundary and the state you crossed
in.

There is also a special symbol for never crossing the boundary again:
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Warning: There is a missing image here. Please open a pull request if you have the notes that go here.

This has a relationship with the Myhill-Nerode relationship:

Which proves that this machine has an equal amount of power as a DFA!
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CHAPTER 9

Context-Free Languages

CFLs are more powerful than regular languages! You can use them to do things like balance parens.

Ex. palindromes, 0𝑛1𝑛, balanced parens, etc.

Context-Free Grammars

CFGs are used to generate CFLs.

9.1 Definition

𝐺 = (𝑁,Σ, 𝑃, 𝑆)

Note: N (“nonterminals”) is sometimes V (“variables”), and P (“productions”) is sometimes R (“rules”)

• 𝑁 is a finite set (nonterminal symbols/variables)

• Σ is a finite set (terminal symbols, disjoint from N)

– 𝑁 ∩ Σ = ∅

• 𝑃 is a finite subset of 𝑁 × (𝑁 ∪ Σ)* (productions)

• 𝑆 ∈ 𝑁 is the start symbol/variable

9.2 Convention

• 𝐴,𝐵,𝐶... = nonterminals

• 𝑎, 𝑏, 𝑐... = terminals

• 𝛼, 𝛽, 𝛾... = strings in (𝑁 ∪ Σ)*

• 𝐴 → 𝛼 for (𝐴,𝛼)
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• 𝐴 → 𝛼1, 𝐴 → 𝛼2, 𝐴 → 𝛼3 = 𝐴 → 𝛼1|𝛼2|𝛼3

A grammar can be abbreviated as a list of rules. The nonterminals can be found on the left, the rules are listed, the
terminals are the states on the right that are not on the left, and the start state is the top nonterminal.

9.3 Examples

Note: For these examples, → will be expressed as := and 𝜖 as e.

9.3.1 Ex 1

𝑎𝑛𝑏𝑛

Formally:

• 𝐺 = (𝑁,Σ, 𝑃, 𝑆)

• 𝑁 = {𝑆}

• Σ = {𝑎, 𝑏}

• 𝑃 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜖}

• 𝑆 = 𝑆

Abbreviated:

S := a S b | e

Ex. 𝑎3𝑏3 can be S := aSb := aaSbb := aaaSbbb := aaabbb.

9.3.2 Ex 2

Even length palindromes.

S := a S a | b S b | e

Ex. aabbaa can be S := aSa := aaSaa := aabSbaa := aabbaa.

9.3.3 Ex 3

Odd length palindromes.

S := a S a | b S b | a | b

Ex. aababaa can be S := aSa := aaSaa := aabSbaa := aababaa.
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9.3.4 Ex 4

The set of strings over {a, b} such that the reversal of a string is the string with a’s and b’s swapped

S := a S b | b S a | e

9.3.5 Ex 5

The set of even length strings

S := a T | b T | e
T := a S | b S

OR

S := aaS | abS | baS | bbS | e

9.3.6 Ex 6

Even length with two middle symbols the same

S := a S a | a S b | b S a | b S b | aa | bb

9.3.7 Ex 7

Odd length with first, middle, and last symbols the same

S := a T a | b U b
T := a T a | a T b | b T a | b T b | a
U := a U a | a U b | b U a | b U b | b

9.3.8 Ex 8

Equal number of a’s and b’s

S := a S b | b S a | S S | e

9.3.9 Ex 9

Palindromes

S := a S a | b S b | a | b | e

9.3.10 Ex 10

Balanced parentheses
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S := ( S ) | S S | e

9.3.11 Ex 11

{0, 1}*

S := 0 S | 1 S | e

9.4 Special Constructions

• Right Linear

– A := x B | x where 𝑥 ∈ Σ*

• Strongly Right Linear

– A := x B | e where 𝑥 ∈ Σ

• Left/Strongly Left Linear are similar.

– All the linear constructions generate the regular languages!

9.4.1 DFA Relation

Since the linear constructions generate the regular languages, they must have an associated DFA:

𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 )

• Make a variable for each state: 𝑉 = {𝑉𝑖|𝑞𝑖 ∈ 𝑄}

• Σ = Σ

• For each 𝛿(𝑞𝑖, 𝑎) → 𝑞𝑗 where 𝑎 ∈ Σ:

– make a rule 𝑉𝑖 → 𝑎𝑉𝑗

• For each 𝑞𝑖 ∈ 𝐹 :

– make a rule 𝑉𝑖 → 𝜖

• 𝑆 = 𝑉0

Ex. Use this method on the language of an odd number of 0s, even number of 1s.
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V1 := 0 V2 | 1 V4
V2 := 0 V1 | 1 V3 | e
V3 := 0 V4 | 1 V2
V4 := 0 V3 | 1 V1

9.5 Closure

Given:

• 𝐺1 = (𝑁1,Σ, 𝑃1, 𝑆1)

• 𝐺2 = (𝑁2,Σ, 𝑃2, 𝑆2)

9.5.1 Union

• 𝐺 = (𝑁,Σ, 𝑃, 𝑆)

• 𝑁 = 𝑁1 ∪𝑁2 ∪ {𝑆}

• 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝑆1, 𝑆 → 𝑆2}

• 𝑆 = 𝑆

9.5.2 Concatenation

• 𝐺 = (𝑁,Σ, 𝑃, 𝑆)

• 𝑁 = 𝑁1 ∪𝑁2 ∪ {𝑆}

• 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝑆1𝑆2}

• 𝑆 = 𝑆
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9.5.3 Kleene Star

(Examining 𝐺*
1)

• 𝐺 = (𝑁,Σ, 𝑃, 𝑆)

• 𝑁 = 𝑁1 ∪ {𝑆}

• 𝑃 = 𝑃1 ∪ {𝑆 → 𝜖, 𝑆 → 𝑆1𝑆}

• 𝑆 = 𝑆

9.5.4 Intersection (Not)

CFLs are not closed under intersection! Counterexample:

• 𝑎𝑛𝑏𝑛𝑐𝑛 is not a CFL

• {𝑎𝑚𝑏𝑚𝑐𝑛|𝑚,𝑛 ≥ 0} is a CFL

– Pf: See CFG 1 below

• {𝑎𝑚𝑏𝑛𝑐𝑛|𝑚,𝑛 ≥ 0} is a CFL

– Pf: See CFG 2 below

• {𝑎𝑚𝑏𝑛𝑐𝑛|𝑚,𝑛 ≥ 0} ∩ {𝑎𝑚𝑏𝑚𝑐𝑛|𝑚,𝑛 ≥ 0} = 𝑎𝑛𝑏𝑛𝑐𝑛 which is not a CFL.

CFG 1
S := A B
A := a A b | e
B := c B | e

CFG 2
S := A B
A := a A | e
B := b B c | e

9.6 Chomsky Normal Form

A special form where all rules are of the form A := BC | a (where 𝐴,𝐵,𝐶 ∈ 𝑁 and 𝑎 ∈ Σ).

Thm. For any CFG G, there is a CFG G’ in CNF s.t. 𝐿(𝐺′) = 𝐿(𝐺) − 𝜖.

9.6.1 Converting to CNF

Step 1: Get rid of epsilon-rules and unit-rules
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Step 2: Make everything either go to one terminal or multiple nonterminals

Step 3: Make every run of 2+ nonterminals just 2 nonterminals.

Ex.

𝐿 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 1}

0.
S := a S b | e

1. add S := a b
S := a S b | e | a b

2. Remove e-productions
S := a S b | a b

3. Give each terminal a nonterminal
S := a S b | a b
A := a
B := b

4. Replace nonterminals on the right
S := A S B | A B
A := a

(continues on next page)
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(continued from previous page)

B := b

5. Replace >2 nonterminals
S := A S2 | A B
S2 := S B
A := a
B := b

Ex.

Balanced parentheses.

0.
S := ( S ) | S S | e

1. add S := ( ) and remove epsilon
S := ( S ) | S S | ( )

2. make each terminal a nonterminal
S := A S B | S S | A B
A := (
B := )

3. Replace runs of >2 nonterminals
S := A S2 | S S | A B
S2 := S B
A := (
B := )

A more complex example can be found on Canvas.

9.7 Pumping Lemma for CFLs

For every CFL L, there exists a 𝑝 ≥ 0 s.t. every 𝑧 ∈ 𝐿 of length ≥ 𝑝 can be divided into five substrings 𝑧 = 𝑢𝑣𝑤𝑥𝑦
such that 𝑣𝑥 ̸= 𝜖 and |𝑣𝑤𝑥| ≤ 𝑝, and for all 𝑖 ≥ 0, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

In English: every sufficiently long string can be divided into 5 segements such that the middle 3 are not too long, and
the second and fourth are both not empty, and no matter how much you pump the 2nd and 4th (simultaneously), the
string stays in the language.

We can use this to prove that a language is not a CFL. We just need to show:

• for all 𝑝 ≥ 0

• there exists 𝑠 ∈ 𝐿 of length at least 𝑝

• such that for all 𝑢𝑣𝑤𝑥𝑦 with 𝑧 = 𝑢𝑣𝑤𝑥𝑦, 𝑣𝑥 ̸= 𝜖, |𝑣𝑤𝑥| ≤ 𝑝

• there exists 𝑖

• such that 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 /∈ 𝐿.

We can use the adversary game again.

9.7.1 Proof

For any CFG, you can make a Chomsky derivation tree:
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Each level may only double the number of nodes at most, since CNF only allows each nonterminal to go to 2 nodes.
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For a derivation tree with 2𝑛 nodes on the bottom, the shortest path to the top must be at least 𝑛 + 1 long.
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So for a grammar with 𝑛 variables, the shortest path to the top must be at least 𝑛 + 1 long.

Which means, by the pigeonhole principle, at least 1 variable must be repeated along that path - you can pump along
the first repeated variable:
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In this diagram, pumping v and x is roughly equivalent to removing the w portion and replacing its child with another
of itself.

You can repeat this process to keep pumping. Alternatively, you can pump down by removing the v and x portions:
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If either v or x is empty, it looks like this:

9.7.2 Ex 1

𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 0}

• 𝑝

• 𝑠 = 𝑎𝑝𝑏𝑝𝑐𝑝, 𝑠 ∈ 𝐿, |𝑠| = 3𝑝 > 𝑝.

• 𝑢𝑣𝑤𝑥𝑦 = 𝑎𝑝𝑏𝑝𝑐𝑝, |𝑣𝑤𝑥| ≤ 𝑝, 𝑣𝑥 ̸= 𝜖

• Let 𝑖 = 2

• Case 1: 𝑣𝑤𝑥 is entirely contained within 𝑎𝑝, 𝑏𝑝, or 𝑐𝑝.

– Either v, x, or both must be made entirely of a’s, b’s, or c’s

– Pumping that fragment results in more of that letter than the others, and the resulting string is not in
the language

• Case 2: Either v or x falls on a boundary between letters

– Pumping that fragment would result in a mixture of letters, and the resulting string is not in the
language

• Case 3: v and x are made of two different letters (w falls on the boundary)
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– Pumping those fragments would result in less of the letter that did not contain v or x, and the resulting
string is not in the language.

9.7.3 Ex 2

𝐿 = {𝑎𝑛𝑏𝑛𝑎𝑛|𝑛 ≥ 0}

• 𝑝

• 𝑠 = 𝑎𝑝𝑏𝑝𝑎𝑝: 𝑠 ∈ 𝐿, |𝑠| = 3𝑝 > 𝑝.

• 𝑢𝑣𝑤𝑥𝑦 = 𝑎𝑝𝑏𝑝𝑎𝑝: |𝑣𝑤𝑥| ≤ 𝑝, 𝑣𝑥 ̸= 𝜖

• Let 𝑖 = 2

• Case 1: 𝑣𝑤𝑥 is entirely contained within 𝑎𝑝 or 𝑏𝑝

– Either v, x, or both must be made entirely of a’s or b’s

– Pumping that fragment results in more of that letter than the others, and the resulting string is not in
the language

• Case 2: Either v or x falls on a boundary between letters

– So v or x contains both a’s and b’s

– Pumping that fragment would result in a mixture of letters, and the resulting string is not in the
language

• Case 3: v and x are made of two different letters (w falls on the boundary)

– Pumping those fragments would result in less a’s in the section that did not contain v or x, and the
resulting string is not in the language.

9.7.4 Ex 3

Σ = {0, 1};𝐿 = {𝑤𝑤|𝑤 ∈ Σ*}

• 𝑝

• 𝑠 = 0𝑝1𝑝0𝑝1𝑝: 𝑠 ∈ 𝐿, |𝑠| = 4𝑝 > 𝑝.

• 𝑢𝑣𝑤𝑥𝑦 = 0𝑝1𝑝0𝑝1𝑝: |𝑣𝑤𝑥| ≤ 𝑝, 𝑣𝑥 ̸= 𝜖

• Case 1: 𝑣𝑤𝑥 is entirely on one half of the string

– Let 𝑖 = 2
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– By pumping, at least one symbol on the boundary is pushed over the boundary to the other half

* Which means that either the second half would start with 1 (but the first starts with 0!)

* Or the first half ends with 0 (but the second ends with 1!)

– the resulting string is not in the language.

• Case 2: v and x are on opposite halves (w is on the boundary)

– let 𝑖 = 0

– The new string becomes 0𝑝1𝑎0𝑏1𝑝

– Both a and b cannot both be p, since either 𝑎 < 𝑝 or 𝑏 < 𝑝

– So the resulting string is not in the language

(. . . what about the boundary?)

9.7.5 Ex 4

(same language as ex 3)

Σ = {𝑎, 𝑏};𝐷 = {𝑤𝑤|𝑤 ∈ Σ*}

Important note: CFL ∩ CFL is not necessarily a CFL, but CFL ∩ regular language is

Consider 𝐷′ = 𝐷 ∩ 𝐿(𝑎*𝑏*𝑎*𝑏*) = {𝑎𝑛𝑏𝑚𝑎𝑛𝑏𝑚|𝑛,𝑚 ≥ 0}

• Assume D is a CFL

• then D’ must be (since the intersection of a CFL and a regular language is a CFL)

• however D’ is not a CFL:

• 𝑝

• 𝑠 = 𝑎𝑝𝑏𝑝𝑎𝑝𝑏𝑝: 𝑠 ∈ 𝐿, |𝑠| = 4𝑝 > 𝑝.

• 𝑢𝑣𝑤𝑥𝑦 = 𝑎𝑝𝑏𝑝𝑎𝑝𝑏𝑝: |𝑣𝑤𝑥| ≤ 𝑝, 𝑣𝑥 ̸= 𝜖

• Let 𝑖 = 2

• Case 1: v or x crosses a boundary between a’s and b’s

– By pumping this fragment, the resulting string introduces a mixture

– no longer of the form 𝑎𝑛𝑏𝑚𝑎𝑛𝑏𝑚

• Case 2: 𝑣𝑤𝑥 is entirely contained within one section of a’s or b’s

– By pumping this fragment, this changes the number of a’s or b’s on only one side

– so the string is not longer in the language

• Case 3: v and x are made entirely of different letters (w contains the boundary)

– Case 1: the boundary is the middle of the left section

* By pumping this fragment, this changes the number of a’s, b’s, or both on only one side

* so the string is not longer in the language

– Case 2: the boundary is the center

* By pumping this fragment, this changes the number of b’s on the left but not the right, a’s
on the right but not the left, or both
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* so the string is not longer in the language

• so D is not a CFL.

9.7.6 Ex 5

Σ = {𝑎, 𝑏};𝐿 = {𝑥 ∈ Σ*|𝑥 is not of form 𝑤𝑤,𝑤 ∈ Σ*}

L is a CFL!

• Odd length strings are certainly not of this form

• what about even length ones? let 𝐿 = 𝑎|𝑏, they must be the form 𝐿𝑛𝑎𝐿𝑚𝐿𝑛𝑏𝐿𝑚

– the (n+1)th symbol on the left is different from the (n+1)th symbol on the right

– so at least 1 symbol must not match

– note: 𝐿𝑛𝑎𝐿𝑚𝐿𝑛𝑏𝐿𝑚 = 𝐿𝑛𝑎𝐿𝑚+𝑛𝑏𝐿𝑚 = 𝐿𝑛𝑎𝐿𝑛𝐿𝑚𝑏𝐿𝑚

S := A | B | A B | B A
A := L A L | a # odd length strings with a in middle
B := L B L | b # odd length strings with b in middle
L := a | b
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Push-Down Automata

PDAs give us a form of memory by introducing a stack, which has infinite space but containing a finite number of
elements:

10.1 Formal Definition

𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑠, 𝐹 ) where

• 𝑄 is a finite set of states

• Σ is a finite set (symbols - input alphabet)

• Γ is a finite set (symbols - stack alphabet)

• 𝛿 : (𝑄× (Σ ∪ {𝜖}) × (Γ ∪ {𝜖})) → 𝑃 (𝑄× (Γ ∪ {𝜖}))

– Takes a state, maybe something from the input, maybe something from the stack (popped)
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– Produces some subset of states (non-deterministic) and something to push on stack, optionally

• 𝑠 ∈ 𝑄 is the start state

• 𝐹 ⊂ 𝑄 is the accept states

10.1.1 Ex 1

• 𝐿 = {0𝑛1𝑛|𝑛 ≥ 0}

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}

• Σ = {0, 1}

• Γ = {0̂, }

• 𝑠 = 𝑞1

• 𝐹 = {𝑞1, 𝑞4}

• 𝛿 is represented by this state diagram:

• Design: Push 0s onto the stack, pop an equal number of 1s.

𝑥, 𝑦 → 𝑧 represents whether to read, what to pop, and what to push, if any.
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10.1.2 Ex 2

𝐿 = {𝑤𝑤𝑅|𝑤 ∈ {0, 1}*}
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Note: The transition 𝑞2 → 𝑞3 is nondeterministic and can be an epsilon move.

10.1.3 Ex 3

The complement of 𝐿 = {𝑤𝑤|𝑤 ∈ {0, 1}*} (see CFG ex. 5)
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10.2 CFGs

You can make a PDA for any CFG using 3 states:

Place $ and start in stack
Do repeatedly:

If var on top:
Pop it and push right side of rule (*)

If terminal on top:
If it matches the stack, advance read head
If not, fail

If $ on top:
Accept

Note: *: This means we allow pushing entire strings onto the stack. This can be done character-wise, but it’s faster
this way.
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10.2.1 Ex 1
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10.2.2 Ex 2

10.3 CKY Algorithm

Given a CFG, how do you determine whether 𝑥 ∈ 𝐿(𝐺)?

Examine the substrings (grammar should be in CNF):

10.3.1 Ex 1

S := AB | BA | SS | AC | BD
A := a
B := b
C := SB
D := SA

Is aabbab in the language? The table represents ways to get from top to right. Fill in the diagonals (longest first):

|a|a|b|b|a|b|
0 1 2 3 4 5 6

(continues on next page)
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(continued from previous page)

+-----+-----+-----+-----+-----+-----+---+
| 0 | | | | | | |
+-----+-----+-----+-----+-----+-----+---+
| {A} | 1 | | | | | |
+-----+-----+-----+-----+-----+-----+---+
| {} | {A} | 2 | | | | |
+-----+-----+-----+-----+-----+-----+---+
| {} | {S} | {B} | 3 | | | |
+-----+-----+-----+-----+-----+-----+---+
| {S} | {C} | {} | {B} | 4 | | |
+-----+-----+-----+-----+-----+-----+---+
| {D} | {S} | {} | {S} | {A} | 5 | |
+-----+-----+-----+-----+-----+-----+---+
| {S} | {C} | {} | {C} | {S} | {B} | 6 |
+-----+-----+-----+-----+-----+-----+---+

Since it is possible to get from 0 to 6 using the start variable, the string is in the language.

10.3.2 Ex 2

S := AB | BC
A := BA | a
B := CC | b
C := AB | a

Is baaba in the language?

|b|a|a|b|a|
0 1 2 3 4 5

+-----------+--------+--------+--------+--------+---+
| 0 | b | | | | |
+-----------+--------+--------+--------+--------+---+
| {B} | 1 | a | | | |
+-----------+--------+--------+--------+--------+---+
| {A, S} | {A, C} | 2 | a | | |
+-----------+--------+--------+--------+--------+---+
| {} | {B} | {A, C} | 3 | b | |
+-----------+--------+--------+--------+--------+---+
| {} | {B} | {S, C} | {B} | 4 | a |
+-----------+--------+--------+--------+--------+---+
| {A, S, C} | {S, A} | {B} | {A, S} | {A, C} | 5 |
+-----------+--------+--------+--------+--------+---+

So the string is in the language.
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Parsing

Example: Propositional Logic

• Variable: P, Q, R, . . .

• Constants: T/F, 0/1, etc.

• Binary operations: ∧,∨, =⇒ , ⇐⇒

• Unary operations: ¬

• Parentheses

E := ( E B E ) | ( U E ) | C | V
B := V | ^ | => | <=>
U := ~
C := 0 | 1
V := P | Q | R | ... | Z

Let’s parse: (((𝑃 ∨𝑄) ∧𝑅) ∨ (𝑄 ∧ (¬𝑃 )))
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A simple parser algorithm (not really robust, or working for other grammars):

• Init stack with ⊥

• Scan left to right

• If open paren, push

• If operator, push

• If constant, push pointer to it

• If variable, lookup in symbol table, push pointer to it

• If close paren, reduce:

– Allocate storage for node in expression tree

– Pop object (ptr to right operand, could be const, var, or another node)

– Pop object (should be the operator), save in node

– If operator is binary:

* Pop object (ptr to left operand)

– Pop object (should be left paren)

– Push pointer to new node
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11.1 Ambiguity

The above example uses parens everywhere so we don’t have to worry about order of ops. What if we don’t?
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E := EBE | UE | C | V | (E)
B := V | ^ | => | <=>
U := 0 | 1
V := P | Q | R | ... | Z

We need to give precedence to some operators. Let’s look at a math grammar and apply OoO:

E := E+E | E-E | E*E | E/E | -E | C | V | (E)
C := 0 | 1
V := a | b | c

There’s a lot of ambiguity without precedence:
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11.1.1 Solution 1: Design

Design the grammar so that there is no ambiguity.

E := E+F | E-F | F
F := F*G | F/G | G
G := -G | H
H := C | V | (E)
C := 0 | 1
V := a | b | c

This gives the following precedence:

1. unary -

2. *, /

3. +, -

4. (

5. ⊥
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This changes our parsing algorithm to check the operator under the operand on the stack when it reaches an operator -
reduce if it has higher or equal precedence, push if not:

Ok, this screenshot kind of failed, but same thing: push * then c:

Now, when we parse the next operator, we see that the operator below (*) has higher precedence: so we need to
reduce!
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Repeat, now the operand underneath is +, which has equal precedence - so we reduce again (because we’re parsing
left to right)
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And check again, the bottom of the stack has super low precedence so we’re fine. Push.
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Now we’re at the end of the string, so reduce as much as possible (in this case 1 reduce):
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Turing Machines

Related:

• Turing Machines

• Post systems

• mu-recursive functions

• lambda calc

• combinatory logic

Is it possible to write a program, that given the description of a machine M and an input for M, simulates the execution
of the machine on that input? (spoilers: yes, with TMs)

12.1 Definition

• infinite tape

– but input is finite, rest of tape is blank

• scanning head

– can read cell from tape

– can write to tape

• finite control

– accept/reject

• tape alphabet

– always includes a special blank symbol, and the input alphabet

• input alphabet

• transition function
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– inputs: (current state, symbol at head)

– outputs: (new state, symbol to write, move l/r)

• stop in accept or reject state

Formally:

• 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐, 𝑞𝑟𝑒𝑗)
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You can notate the current state of the machine and tape like this:

12.2 Examples

Note: The symbol for “empty” on the tape below is notated e.

12.2.1 Ex 1

Even length strings of 0s:
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We can use some shorthand:

• If not changing states, omit new state

• If not writing, omit symbol to write

+----+------+-------+
| | 0 | e |
+====+======+=======+
| q0 | q1 R | ACC R |
+----+------+-------+
| q1 | q0 R | REJ r |
+----+------+-------+

Alternatively, you can use a state diagram:
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12.2.2 Ex 2

Even # of 0s, ignore 1s

+----+------+---+-----+
| | 0 | 1 | e |
+----+------+---+-----+
| q0 | q1 R | R | ACC |
+----+------+---+-----+
| q1 | q0 R | R | REJ |
+----+------+---+-----+

12.2.3 Ex 3

Add 1 to binary number

• Σ = {0, 1}

• Γ = {>, 0, 1}

Strategy: Move to the end of the tape, then go back and write 0s at each 1 until your carry is fine.

+----+-----+---------+-----+-------+
| | > | 0 | 1 | e |
+====+=====+=========+=====+=======+
| q0 | R | R | R | q1, L |
+----+-----+---------+-----+-------+
| q1 | REJ | ACC 1 L | 0 L | REJ |
+----+-----+---------+-----+-------+

12.2.4 Ex 4

Equal number of 0->1 transitions as 1->0 (assume string starts with 0)

+----+------+------+-----+
| | 0 | 1 | e |
+====+======+======+=====+
| q0 | R | q1 R | ACC |
+----+------+------+-----+
| q1 | q0 R | R | REJ |
+----+------+------+-----+

12.2.5 Ex 5

0𝑛1𝑛
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+----+--------+--------+------+------+-----+
| | 0 | 1 | X | Y | e |
+====+========+========+======+======+=====+
| q0 | q1 X R | REJ | | q3 R | |
+----+--------+--------+------+------+-----+
| q1 | R | q2 Y L | REJ | R | REJ |
+----+--------+--------+------+------+-----+
| q2 | L | | q0 R | L | |
+----+--------+--------+------+------+-----+
| q3 | REJ | REJ | REJ | R | ACC |
+----+--------+--------+------+------+-----+

Execution looks like this:

110 Chapter 12. Turing Machines



cse103-notes

(con’t)
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12.2.6 Ex 6

Palindromes

• Γ = {>, 0, 1, 𝑒}

• A string may look like >010e.

+-----+--------+--------+-----+-------+
| | 0 | 1 | > | e |
+=====+========+========+=====+=======+
| s | q0 > R | q1 > R | R | ACC |
+-----+--------+--------+-----+-------+
| q0 | R | R | | q0' L |
+-----+--------+--------+-----+-------+
| q0' | q2 e L | REJ | ACC | |
+-----+--------+--------+-----+-------+
| q1 | R | R | | q1' L |
+-----+--------+--------+-----+-------+
| q1' | REJ | q2 e L | ACC | |
+-----+--------+--------+-----+-------+
| q2 | L | L | s R | |
+-----+--------+--------+-----+-------+

12.2.7 Ex 7

w#w - the same string repeated twice with a divider (Sipser’s approach)
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12.2.8 Ex 8

ww - without the boundary

Γ = {𝑎, 𝑏,⊣, ., similar marks for b}

• Scan L to R, counting symbols mod 2.

– If not even, reject

• When reach end, put down an end marker ⊣

• Then repeatedly scan left and right over tape

• When scanning R to L mark first unmarked a or b with á

• When scanning L to R mark first unmarked a or b with à

• Continue until all symbols of input are marked (finds middle of string)

• Repeatedly scan L to R

– Remember and erase first à symbol

– Check first á matches and erase

– Reject if no match

• When all symbols erased, reject
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12.3 Variants

12.3.1 Multi-Tape TM

E.g. 2 tapes

This is only just as powerful as a 1-tape TM:

12.3.2 Infinite Tape

Infinite left/right.

12.4 Universal TM

Given:

• initial tape information

• the functional matrix for a TM

it is possible to simulate the operation of another TM.

1. scan symbol under read/write head

2. look up entry in function table for current state and the symbol read
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1. write second symbol of entry

2. move r/w head according to 3rd symbol entry

3. set current state to first symbol of entry

3. if current state acc or rej do so

4. goto 1

12.4.1 Special Coding

Need way to distinguish between 3 kinds of symbols: L/R, input/tape alphabet, states

Maybe we can use binary:
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12.4.2 Halting Problem

For any universal machine U, it acts the same way on a string as the machine it simulates. Is it possible to make a
universal machine that halts and rejects if the simulated machine loops?
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No. No it is not. Use diagonalization:

12.4.2.1 Diagonalization Review

The real numbers are not countable.

• Assume R is countable

• So it is possible to write a list of R

• Consider a list of numbers (in this example, binary decimals):
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• Given this, it is possible to define a real number that is not in the list:

– the first digit is the opposite of the first position of the first number in the list

– the second digit is the opposite of the second position of the second number

– etc

• so the number must be different from all other numbers in the list

• which means it must not be able to make a list, so R cannot be countable.

12.4.2.2 Proof

• let x be a binary number

• let 𝑀𝑥 be the TM with the encoding x

• if x is not a valid TM encoding, 𝑀𝑥 halts

• consider the matrix, encoding whether each machine halts on a given input:

+-------+---+---+---+----+----+-----+----+-----+
| | e | 0 | 1 | 00 | 01 | 10 | 11 | ... |
+=======+===+===+===+====+====+=====+====+=====+
| M_e | H | H | H | H | H | H | H | |
+-------+---+---+---+----+----+-----+----+-----+
| M_0 | | | | | | | | |
+-------+---+---+---+----+----+-----+----+-----+
| M_1 | | | | | | | | |
+-------+---+---+---+----+----+-----+----+-----+
| M_00 | | | | | | | | |
+-------+---+---+---+----+----+-----+----+-----+
| M_01 | | | | | | | | |
+-------+---+---+---+----+----+-----+----+-----+
| ... | | | | | | | | |
+-------+---+---+---+----+----+-----+----+-----+
| M_... | H | L | H | L | L | ... | | |
+-------+---+---+---+----+----+-----+----+-----+

• Assume K exists that can determine, if given some machine M and string x, whether M halts on x
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• Build N using K

– On input x:

– N applies K to 𝑀𝑥, 𝑥

– run K on 𝑀𝑥𝑥

– if K accepts (i.e. 𝑀𝑥 halts), N loops

– if K rejects, N accepts

– (note: this is the diagonalization argument on the matrix above)

• So N is different on at least one given string for every 𝑀𝑥 in the table above

• So we have constructed an impossible machine, since it is not in the list of all possible machines above, so K
cannot exist

12.4.2.3 Example

m = 999
while m > 1:

if m % 2 == 0:
m = m // 2

else:
m = 3 * m + 1

Is there any value of m such that this loop never halts? We don’t know!
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12.5 Reduction

Ex. Halting Problem v. Membership Problem
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• Left side: reducing the halting problem to the membership problem

• Right side: reducing the membership problem to the halting problem

You can use this to show that the membership problem is not solvable.
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12.6 Rice’s Theorem

For each of these, there is an algorithm that can solve these problems for finite automata:
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However, these are not solvable for Turing Machines.

12.6.1 Definitions

• Recursively Enumerable: if 𝑆 = 𝐿(𝑀) for some TM (i.e. TM doesn’t loop)

• Decidable: a property is decidable if the set of strings with property is recursive

– i.e. a total TM accepts strings with prop and rejects without prop

How do we find the set of all strings a TM accepts?
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12.6.2 Thm

Any non-trivial property of a recursively enumerable set is undecidable.

12.6.3 Proof

• Let p be a non-trivial property of a recursively enumerable set such that:

– 𝑃 (𝐴) = T or F

– 𝑃 (∅) = F

• p is non-trivial =⇒ ∃𝐴 a recursively enumerable set that has p

• let K be a TM that accepts A

• Let M and M’ be defined as such:
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• above: M halts on x =⇒ 𝐿(𝑀 ′) = 𝐴

• M does not halt on x =⇒ 𝐿(𝑀 ′) = ∅

• 𝐿(𝑀 ′) = 𝐴 =⇒ 𝑃 (𝐿(𝑀 ′)) = 𝑃 (𝐴) = 𝑇

• 𝐿(𝑀 ′) = ∅ =⇒ 𝑃 (𝐿(𝑀 ′)) = 𝑃 (∅) = 𝐹

• Reversing this, if we can decide the property, then we can tell if M halts on x.

• The halting problem is not solvable, so this problem is not solvable.

12.6.4 Conclusion

regular languages ⊂ CFLs ⊂ recursive ⊂ RE ⊂ Σ*

There are a lot of languages that are not expressible by a TM! There are infinite subsets of Σ*!
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Indices and tables

• genindex

• modindex

• search
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